\(\int \frac {x^6}{(a x+b x^3+c x^5)^2} \, dx\) [94]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 237 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\left (b-\frac {b^2+4 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \]

[Out]

1/2*x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/4*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b+(
-4*a*c-b^2)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)*2^(1/2)/c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+1/4*arctan(x*2^(1/2)
*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b^2+4*a*c+b*(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2)*2^(1/2)/c^(1/2)/(b+
(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1599, 1134, 1180, 211} \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {\left (b-\frac {4 a c+b^2}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right ) \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b \sqrt {b^2-4 a c}+4 a c+b^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[x^6/(a*x + b*x^3 + c*x^5)^2,x]

[Out]

(x*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + ((b - (b^2 + 4*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[
2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + ((
b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*Sqrt[c]
*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1134

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d^3)*(d*x)^(m - 3)*(2*a
+ b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 1)*(b^2 - 4*a*c))), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int
[(d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {2 a-b x^2}{a+b x^2+c x^4} \, dx}{2 \left (b^2-4 a c\right )} \\ & = \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (b^2+4 a c-b \sqrt {b^2-4 a c}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )^{3/2}}+\frac {\left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{4 \left (b^2-4 a c\right )^{3/2}} \\ & = \frac {x \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (b^2+4 a c-b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{2 \sqrt {2} \sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.99 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {1}{4} \left (\frac {2 \left (2 a x+b x^3\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt {2} \left (-b^2-4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {\sqrt {2} \left (b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {c} \left (b^2-4 a c\right )^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}}\right ) \]

[In]

Integrate[x^6/(a*x + b*x^3 + c*x^5)^2,x]

[Out]

((2*(2*a*x + b*x^3))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (Sqrt[2]*(-b^2 - 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTa
n[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]])
+ (Sqrt[2]*(b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[
c]*(b^2 - 4*a*c)^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/4

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.52

method result size
risch \(\frac {-\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {a x}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {b \,\textit {\_R}^{2}}{4 a c -b^{2}}+\frac {2 a}{4 a c -b^{2}}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{4}\) \(123\)
default \(\frac {-\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right )}-\frac {a x}{4 a c -b^{2}}}{c \,x^{4}+b \,x^{2}+a}+\frac {2 c \left (\frac {\left (-b \sqrt {-4 a c +b^{2}}-4 a c -b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (-b \sqrt {-4 a c +b^{2}}+4 a c +b^{2}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{8 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{4 a c -b^{2}}\) \(230\)

[In]

int(x^6/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)

[Out]

(-1/2*b/(4*a*c-b^2)*x^3-a/(4*a*c-b^2)*x)/(c*x^4+b*x^2+a)+1/4*sum((-b/(4*a*c-b^2)*_R^2+2*a/(4*a*c-b^2))/(2*_R^3
*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1668 vs. \(2 (193) = 386\).

Time = 0.28 (sec) , antiderivative size = 1668, normalized size of antiderivative = 7.04 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(x^6/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")

[Out]

1/4*(2*b*x^3 + sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c
 + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*
c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))*log((3*b^2 + 4*a*c)*x + sqrt(1/2)*(b^4 - 8*a*b^2*c
 + 16*a^2*c^2 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*
b^2*c^4 - 64*a^3*c^5))*sqrt(-(b^3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c
^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) - sqr
t(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c + (b^6*c - 12*a*b
^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*
a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))*log((3*b^2 + 4*a*c)*x - sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 + 2*
(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c
^5))*sqrt(-(b^3 + 12*a*b*c + (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3
+ 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) + sqrt(1/2)*((b^2*c - 4
*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c - (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^
2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2
*b^2*c^3 - 64*a^3*c^4))*log((3*b^2 + 4*a*c)*x + sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - 2*(b^7*c - 12*a*b^5*
c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(-(b^3 +
12*a*b*c - (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 -
 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) - sqrt(1/2)*((b^2*c - 4*a*c^2)*x^4 + a*b^
2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2)*sqrt(-(b^3 + 12*a*b*c - (b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4
)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*
c^4))*log((3*b^2 + 4*a*c)*x - sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c
^3 - 64*a^3*b*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))*sqrt(-(b^3 + 12*a*b*c - (b^6*c
- 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4)/sqrt(b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5))/(b^6
*c - 12*a*b^4*c^2 + 48*a^2*b^2*c^3 - 64*a^3*c^4))) + 4*a*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 -
4*a*b*c)*x^2)

Sympy [A] (verification not implemented)

Time = 7.36 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.25 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {- 2 a x - b x^{3}}{8 a^{2} c - 2 a b^{2} + x^{4} \cdot \left (8 a c^{2} - 2 b^{2} c\right ) + x^{2} \cdot \left (8 a b c - 2 b^{3}\right )} + \operatorname {RootSum} {\left (t^{4} \cdot \left (1048576 a^{6} c^{7} - 1572864 a^{5} b^{2} c^{6} + 983040 a^{4} b^{4} c^{5} - 327680 a^{3} b^{6} c^{4} + 61440 a^{2} b^{8} c^{3} - 6144 a b^{10} c^{2} + 256 b^{12} c\right ) + t^{2} \left (- 12288 a^{4} b c^{4} + 8192 a^{3} b^{3} c^{3} - 1536 a^{2} b^{5} c^{2} + 16 b^{9}\right ) + 16 a^{3} c^{2} + 24 a^{2} b^{2} c + 9 a b^{4}, \left ( t \mapsto t \log {\left (x + \frac {16384 t^{3} a^{3} b c^{4} - 12288 t^{3} a^{2} b^{3} c^{3} + 3072 t^{3} a b^{5} c^{2} - 256 t^{3} b^{7} c + 64 t a^{2} c^{2} - 128 t a b^{2} c - 4 t b^{4}}{4 a c + 3 b^{2}} \right )} \right )\right )} \]

[In]

integrate(x**6/(c*x**5+b*x**3+a*x)**2,x)

[Out]

(-2*a*x - b*x**3)/(8*a**2*c - 2*a*b**2 + x**4*(8*a*c**2 - 2*b**2*c) + x**2*(8*a*b*c - 2*b**3)) + RootSum(_t**4
*(1048576*a**6*c**7 - 1572864*a**5*b**2*c**6 + 983040*a**4*b**4*c**5 - 327680*a**3*b**6*c**4 + 61440*a**2*b**8
*c**3 - 6144*a*b**10*c**2 + 256*b**12*c) + _t**2*(-12288*a**4*b*c**4 + 8192*a**3*b**3*c**3 - 1536*a**2*b**5*c*
*2 + 16*b**9) + 16*a**3*c**2 + 24*a**2*b**2*c + 9*a*b**4, Lambda(_t, _t*log(x + (16384*_t**3*a**3*b*c**4 - 122
88*_t**3*a**2*b**3*c**3 + 3072*_t**3*a*b**5*c**2 - 256*_t**3*b**7*c + 64*_t*a**2*c**2 - 128*_t*a*b**2*c - 4*_t
*b**4)/(4*a*c + 3*b**2))))

Maxima [F]

\[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {x^{6}}{{\left (c x^{5} + b x^{3} + a x\right )}^{2}} \,d x } \]

[In]

integrate(x^6/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")

[Out]

1/2*(b*x^3 + 2*a*x)/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2) + 1/2*integrate((b*x^2 - 2
*a)/(c*x^4 + b*x^2 + a), x)/(b^2 - 4*a*c)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2132 vs. \(2 (193) = 386\).

Time = 0.88 (sec) , antiderivative size = 2132, normalized size of antiderivative = 9.00 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(x^6/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")

[Out]

1/2*(b*x^3 + 2*a*x)/((c*x^4 + b*x^2 + a)*(b^2 - 4*a*c)) + 1/16*(2*b^7*c^2 - 8*a*b^5*c^3 - 32*a^2*b^3*c^4 + 128
*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^7 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(
b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6*c + 16*sq
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqr
t(b^2 - 4*a*c)*c)*b^5*c^2 - 64*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^5*c^2 + 32*(b^2 - 4*a*c)*a^2*b*c^4 - (2*b^3*c^2 - 8*a*b*c^3 - s
qrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2
 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*
a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*c^2)*(b^2 - 4*a*c)^2 - 4*(sqrt(2)*sqrt(b*c + sq
rt(b^2 - 4*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^2 - 2*sqrt(2)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*a*b^3*c^2 - 2*a*b^4*c^2 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt
(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^3 + 16*a^2*b^2*c^3 - 4
*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^4 - 32*a^3*c^4 + 2*(b^2 - 4*a*c)*a*b^2*c^2 - 8*(b^2 - 4*a*c)*a^
2*c^3)*abs(b^2 - 4*a*c))*arctan(2*sqrt(1/2)*x/sqrt((b^3 - 4*a*b*c + sqrt((b^3 - 4*a*b*c)^2 - 4*(a*b^2 - 4*a^2*
c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*a*c^2)))/((a*b^6*c - 12*a^2*b^4*c^2 - 2*a*b^5*c^2 + 48*a^3*b^2*c^3 + 16*a^2*
b^3*c^3 + a*b^4*c^3 - 64*a^4*c^4 - 32*a^3*b*c^4 - 8*a^2*b^2*c^4 + 16*a^3*c^5)*abs(b^2 - 4*a*c)*abs(c)) + 1/16*
(2*b^7*c^2 - 8*a*b^5*c^3 - 32*a^2*b^3*c^4 + 128*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*
a*c)*c)*b^7 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c
)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^6*c + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^3
*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 - 64*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b
*c - sqrt(b^2 - 4*a*c)*c)*a^3*b*c^3 - 32*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3
 + 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^5*c^2 + 32*(b^2
- 4*a*c)*a^2*b*c^4 - (2*b^3*c^2 - 8*a*b*c^3 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3 +
4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqr
t(b^2 - 4*a*c)*c)*b^2*c - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b*c^2 - 2*(b^2 - 4*a*c)*b*
c^2)*(b^2 - 4*a*c)^2 - 4*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c - 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*
a*c)*c)*a^2*b^2*c^2 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^2 + 2*a*b^4*c^2 + 16*sqrt(2)*sqrt(b*c
- sqrt(b^2 - 4*a*c)*c)*a^3*c^3 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^3 + sqrt(2)*sqrt(b*c - sqrt
(b^2 - 4*a*c)*c)*a*b^2*c^3 - 16*a^2*b^2*c^3 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^4 + 32*a^3*c^4 -
 2*(b^2 - 4*a*c)*a*b^2*c^2 + 8*(b^2 - 4*a*c)*a^2*c^3)*abs(b^2 - 4*a*c))*arctan(2*sqrt(1/2)*x/sqrt((b^3 - 4*a*b
*c - sqrt((b^3 - 4*a*b*c)^2 - 4*(a*b^2 - 4*a^2*c)*(b^2*c - 4*a*c^2)))/(b^2*c - 4*a*c^2)))/((a*b^6*c - 12*a^2*b
^4*c^2 - 2*a*b^5*c^2 + 48*a^3*b^2*c^3 + 16*a^2*b^3*c^3 + a*b^4*c^3 - 64*a^4*c^4 - 32*a^3*b*c^4 - 8*a^2*b^2*c^4
 + 16*a^3*c^5)*abs(b^2 - 4*a*c)*abs(c))

Mupad [B] (verification not implemented)

Time = 9.47 (sec) , antiderivative size = 4973, normalized size of antiderivative = 20.98 \[ \int \frac {x^6}{\left (a x+b x^3+c x^5\right )^2} \, dx=\text {Too large to display} \]

[In]

int(x^6/(a*x + b*x^3 + c*x^5)^2,x)

[Out]

- atan(((((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2
*c^2 - 12*a*b^4*c)) - (x*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/
(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*
b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b
^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 409
6*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)
- (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 +
 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^
3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*1i - (((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*
a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(((-(4*a*c - b^2)^9)
^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 +
240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3
- 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 76
8*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 -
 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) + (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b
^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3
*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 614
4*a^5*b^2*c^6)))^(1/2)*1i)/((((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*
a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) - (x*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2
 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4
*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4
+ 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^
3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a
^5*b^2*c^6)))^(1/2) - (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b
^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*
c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) - (4*a^2*b*c^2 + 3*a*b
^3*c)/(4*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3
- 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(((-(4*a*c - b^2)^9)^(1/2) - b^9
 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*
c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b
*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4
+ 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^
6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) + (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*
c^2 - 8*a*b^2*c)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b
^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^
6)))^(1/2)))*(((-(4*a*c - b^2)^9)^(1/2) - b^9 + 768*a^4*b*c^4 + 96*a^2*b^5*c^2 - 512*a^3*b^3*c^3)/(32*(b^12*c
+ 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(
1/2)*2i - atan(((((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48
*a^2*b^2*c^2 - 12*a*b^4*c)) - (x*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*
b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 -
6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^
2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^
12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6
)))^(1/2) - (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)
^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240
*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*1i - (((2048*a^4*c^5 - 32*a*b^6
*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) + (x*(-(b^9 +
(-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a
*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 19
2*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)^
9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*
a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) + (x*(b^4*c + 8*a^2*c^3 + 2*a*b^
2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2
 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4
*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*1i)/((((2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)
/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a*b^4*c)) - (x*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 -
 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6
*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3
*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2
+ 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*
b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) - (x*(b^4*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c))
)*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6
*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) + (((
2048*a^4*c^5 - 32*a*b^6*c^2 + 384*a^2*b^4*c^3 - 1536*a^3*b^2*c^4)/(8*(b^6 - 64*a^3*c^3 + 48*a^2*b^2*c^2 - 12*a
*b^4*c)) + (x*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*
c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))
^(1/2)*(16*b^7*c^2 - 192*a*b^5*c^3 - 1024*a^3*b*c^5 + 768*a^2*b^3*c^4))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-
(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7
 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) + (x*(b^4
*c + 8*a^2*c^3 + 2*a*b^2*c^2))/(2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)))*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4
*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280
*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)))^(1/2) - (4*a^2*b*c^2 + 3*a*b^3*c)/(4*(b^6 - 64*a^3*c^3 +
 48*a^2*b^2*c^2 - 12*a*b^4*c))))*(-(b^9 + (-(4*a*c - b^2)^9)^(1/2) - 768*a^4*b*c^4 - 96*a^2*b^5*c^2 + 512*a^3*
b^3*c^3)/(32*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 3840*a^4*b^4*c^5 -
6144*a^5*b^2*c^6)))^(1/2)*2i - ((a*x)/(4*a*c - b^2) + (b*x^3)/(2*(4*a*c - b^2)))/(a + b*x^2 + c*x^4)